

Skylights

Newsletter of the Astronomical Society of Northern New England

FEB 2026

Skylights Editor:
Paul Kursewicz

Member of NASA's
Night Sky Network

**Astronomical League
Member**

ASNNE MISSION

ASNNE is an incorporated, non-profit, scientific and educational organization with three primary goals:

- 1) To have fun sharing our knowledge and interest with others.**
- 2) To provide basic education in astronomy and related sciences to all who are interested.**
- 3) To promote the science of Astronomy.**

What's Up In February

By Bernie Reim

The month of February is named after the word Februa, which are the ancient Roman rites of purification. Looking up into the cold and unforgiving winter night sky and contemplating how we are all part of this much greater universe that is always all around us and even within us is one good way to feel more purified and encouraged and to discover our individual purpose here on Earth and how we are all part of something infinitely much larger than our seemingly limited selves.

We made it halfway through winter now. That is marked by Groundhog Day, which is one of 4 cross-quarter days that mark the midpoints of our 4 seasons. Groundhog Day is also called Candlemass. The next one will be Beltane, or May Day. Then there is Lammas Day on August 1, which also means "Loaf Mass" and marks the beginning of the wheat harvest. Then our Halloween is Samhain or "summer's end" in the Celtic tradition. Now you have each year divided into 8 roughly 6 weeks periods to notice seasonal changes more accurately.

There are several interesting highlights this month that will make it worth your while to brave the cold and try to understand and appreciate these events more clearly. These include Jupiter, the King of the Planets, still ruling the night sky from Gemini, Saturn and Neptune setting earlier in Pisces, the reappearance of Venus and Mercury in the evening sky just below Saturn, a very close conjunction of the moon and Mercury on the 18th, Uranus and the moon passing through the Pleiades in Taurus on the 23rd, a fairly bright 6th magnitude comet named Wierczos passing through the constellation of Sculptor and Eridanus the River, an asteroid named Nysa at opposition in Gemini, the zodiacal light about an hour after astronomical twilight, an annular solar eclipse at new moon on the 17th visible over South America and parts of Antarctica, and finally still a good chance of the northern lights since the sun is still very active.

Jupiter is the King of the planets and it will be the main "star" of the evening sky again until the middle of the month when Venus finally reemerges in the evening sky to steal the show, but only until it will set about an hour later low in the western evening sky. After that brief interruption in their quest for stardom (I am sure the planets don't really care which one shines the brightest) Jupiter once again reclaims its well-deserved place as the brightest object in the sky after the sun and the moon. Since Jupiter is still close to us and near its best for the whole year, there will be many interesting transits of its 4 largest Galileans moons to watch through a small telescope.

Venus will now shine at magnitude minus 3.9 which is one full magnitude or two and a half times fainter than what it will reach at its brightest later this summer when it will be much closer to us, but also less illuminated by the sun. Venus just passed superior conjunction with the sun last December when it disappeared from our morning sky from November 20 until February 15, nearly 3 months later.

When Venus will reach inferior conjunction with the sun on October 24 of this year, it will only disappear for a few days until it shows up again in the morning sky for another roughly 7 months. It is much closer to us at inferior conjunction than it is at superior conjunction, so it reappears much quicker then. Transits of Venus, which are like mini solar eclipses, can only occur at inferior conjunction when the Earth, Venus, and the sun are in the same plane. The last two just happened fairly recently, on June 8 of 2004 and June 5 of 2012. I was lucky enough to have seen both of those rare events. They always happen in a strange pattern of just 8 years apart and then you have to wait for 105.5 years for the next pair of transits on December 10 of 2117 and December 8 of 2125. After that pair of transits, the wait period goes to 121.5 years, switching back to June in the far future year of 2247.

The reason for this seemingly strange pattern is very simple and mathematical once you understand it, like just about everything in science that can be determined and proven and repeated using mathematics,

"Continued on page 2"

Inside This Issue

Club Contact List	Pg. 2
Moon Data	Pg. 3
February's Night Sky	Pg. 4
Touching the Sun	Pg. 5
Sky Object of the Month	Pg. 6
A 50 Million Light Year Structure Caught Spinning	Pg. 7,8
Astro-Imaging Photos & Techniques	Pg. 9-12
Bortle Dark Sky Scale	Pg. 13
Club Info & Directions to ASNNE	Pg. 14
Meteor Showers in 2025	Pg. 15
Club Merchandise for Sale	
Club Membership Dues 2026	
ASNNE Club & Library Resources	Pg. 16
Become a Member	Pg. 17

Club Contacts

Officers:

President:

David Bianchi
dadsnorlax@yahoo.com

Vice President:

Bernie Reim
bernard.reim@maine.edu

Secretary:

Sarah Myles
sarahdesignme@yahoo.com

Treasurer:

Ian Durham
idurham@anselm.edu

Board of Directors:

Gary Asperschlager
gasperschlager@gmail.com

Marty Burgess
martyfb7@gmail.com

Bernard Valliere

Star Party Co-ordinator:

Open Position

Skylights Editor:

Paul Kursewicz
pkursewicz@myfairpoint.net

Website Manager:

Open Position

NASA Night Sky Network Co-ordinator:

Joan Chamberlin
starladyjoan@yahoo.com

JPL Solar System Ambassador:

Joan Chamberlin
starladyjoan@yahoo.com

E-mail coordinator

David Bianchi
dadsnorlax@yahoo.com

What's Up "Continued from page 1"

, the universal language. The orbits of Earth and Venus around the sun are in an 8 to 13 resonance. For every 8 orbits that we make around the sun, Venus makes 13 orbits. One year on Venus equals 225 earth days. That explains the 8 years when the earth, Venus, and the sun are in alignment. It is similar to our eclipse seasons that are about 6 months apart when the earth, sun, and moon are in alignment on the same plane in space. Any alignment of 3 celestial bodies is called a syzygy.

The numbers 8 and 13 are Fibonacci sequence numbers. They are named for the Italian Leonardo Pica, also known as Fibonacci, who wrote about them in 1202. However, this common sequence was known for hundreds of years before that time in India. It is simply the sum of the two previous numbers in the sequence. If you start at zero you get one, then one, then two, then 3, 5, 8, 13, 21, 34, 55, 89, 144 and so on. The golden ratio or phi, is defined as the ratio between any of these 2 numbers, but it works better the farther into the sequence you get. The number is about 1.618 and it is an irrational number like pi which is about 3.14159, or e, the mathematical constant that is the base of the natural logarithm and exponential function, 2.71828. This number is critical in radioactive decay rates and growth rates of everything from people to interest on your money in the bank.

Fibonacci numbers can be found everywhere in nature at all scales. It is very obvious in sunflowers and pine cones and how twigs and leaves spiral from the branches of trees to obtain the optimal amount of sunlight. It is also obvious in broccoli, seashells, and all the way up to the spirals that become galaxies of hundreds of billions of stars like our own Milky Way.

Notice that Venus will be about 4 times brighter than Jupiter, which is slowly fading from its brightest and closest to Earth back on January 10. Look for Mercury to appear low in our western evening sky in the constellation of Aquarius around the 10th of this month. It will be about 12 times fainter than Venus which will first show up 10 degrees below Mercury a few days later. Then keep watching this pair as Venus continues to get higher in our sky as it gets closer and brighter even as Mercury sinks lower again. Mercury will reach its greatest eastern elongation from the sun on the 19th. The slender waxing crescent moon will occult or cover up Mercury in parts of this country on the 18th, but not for us in the Northeast.

Saturn is about another 10 degrees above Venus and Mercury. The ringed planet now sets a little earlier each night in Pisces the Fish and we will lose it completely late next month when it reaches conjunction with the sun. Notice that golden Saturn is the faintest of these 3 at first magnitude, or 100 times fainter than Venus.

Mars is now the only planet that is still not visible in our skies anytime this month. The red planet is just past its superior conjunction with the sun and it will appear before dawn in our morning sky again this spring.

The nearly first quarter moon will pass right through part of the Pleiades open star cluster in Taurus. Uranus will be directly above the moon, but you will need binoculars or a telescope to see it. Neptune is still very close to Saturn, but you would also need a telescope to spot our farthest planet.

The featured comet for this month will be brighter than most comets for any given month, but it will still be a challenge to find in our sky. It is named Comet Wierchos and it was visible without optical aid in the southern hemisphere, but we will need a good pair of binoculars to find it here low in the southwestern sky in Eridanus the River and Cetus the Whale. These two less prominent constellations are just to the right and below the Winter Hexagon, which is slowly shifting to the west since we are already half way through this winter. It should be high enough for us to see at this latitude by the middle of this month near new moon.

A main belt asteroid named 44 Nysa will be near opposition in Gemini this month, not too far to the left of Jupiter. It is a little smaller than the top 10 asteroids at only 70 miles by 40 miles across, but it is highly reflective. It is a rare e-type asteroid which stands for enstatite which is a mineral with the formula MgSiO₃. It is an achondrite stony asteroid that does not contain amino acids like the carbonaceous chondrites do.

One of the top ten science stories of last year was discovering not only 33 amino acids from our 120-gram sample of the near-earth asteroid named Bennu, but they also found 14 of the 20 proteins needed to build life on Earth and all 5 of the nucleotides that make up DNA and RNA. Even more unexpected was the discovery of 11 salt-rich minerals that have never been detected in any extraterrestrial samples. This means that Bennu had some kind of a salty ocean that served as a primordial broth allowing the building blocks of life to combine. This could also be true of Enceladus, a moon of Saturn.

This shows that all the building blocks for life could well have been present nearly everywhere in the early solar system, about 4.5 billion years ago. Water and organic molecules could have been delivered this way not only to Earth, but other planets in our solar system that no longer have life as we know it. All of this is probably also going on in countless other similar solar systems nearby in our own Milky Way galaxy.

This is a good time to look for the zodiacal light about an hour after sunset near new moon and far away from any lights from cities and towns. This is a soft, mysterious glow low in the western sky caused by sunlight reflecting off all the trillions of comet dust particles trapped in the ecliptic plane of our solar system. Even though there are no more good meteor showers until the Lyrids on April 22, now you can see the leftover comet dust from ALL of the meteor showers all at once!

"Continued on page 3"

Moon Phases

Feb 1

Full

Feb 9

Last Quarter

Feb 17

New

Feb 24

First Quarter

Moon Data

Feb 6

12:15am Moon
close to Spica

Feb 10

Moon at Apogee
251,392

Feb 18

Shortly after
sunset
Crescent Moon
1/2° from Mercury

Feb 23

Moon located very
close to Pleiades

Feb 24

Moon at Perigee
229,991

Feb 26

1 hour after sunset
Moon close to
Jupiter

What's Up "Continued from page 2"

This pyramid or cone of faint light will extend upward along the ecliptic from Aquarius, Pisces, and maybe into Aries. That is exactly where 4 planets can be found now, Venus, Mercury, Saturn, and Neptune, so use them as a guide to see this ethereal phenomenon for yourself. The zodiacal light will be visible into March and then it will not become visible again until fall in the morning sky about one hour before sunrise in the eastern sky. The angle of the ecliptic to our horizon is steepest at those times, making the zodiacal light visible to us only at those times even though it is always there in our ecliptic plane.

Feb.1. Full moon is at 5:09 p.m. EST. This is also called the Snow or Hunger Moon.

Feb.4. Clyde Tombaugh was born on this day in 1906. He would discover Pluto on February 18 in 1930.

Feb.8. Jules Verne was born on this day in 1828.

Feb.9. Last quarter moon is at 7:43 a.m.

Feb. 14. Fritz Zwicky was born on this day in 1898. He was a Swiss astronomer that taught at Cal Tech for many years and first proposed that dark matter must exist back in 1933.

Feb.15. Saturn passes 0.9 degrees south of Neptune this evening. Galileo was born on this day in 1564. He improved on the telescope and first used it to observe the heavens in 1609, thereby making many earth-shaking discoveries including the proof the earth was not the center of the solar system or the universe. On this day in 2013, a 20- meter -wide asteroid exploded about 20 miles above Chelyabinsk, Russia. It left a brilliant streak in the morning sky as it was breaking up that was photographed by many Russians going to work that morning. The shock wave injured many people from broken glass, but luckily no one died from this explosion.

Feb. 17. New moon is at 7:01 a.m. EST. There will be an annular solar eclipse visible over Antarctica today.

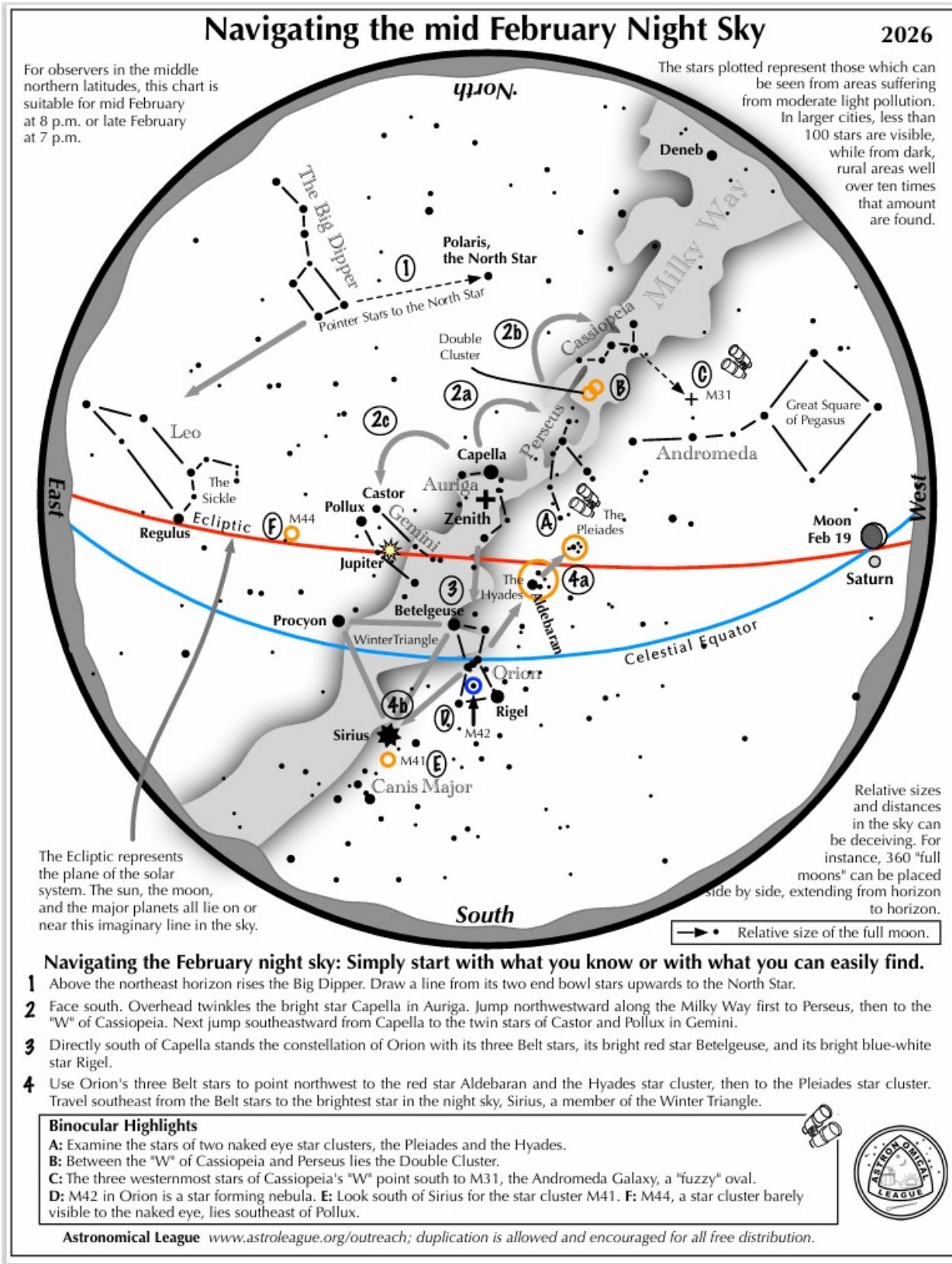
Feb. 18. The moon passes 1.7 degrees north of Venus and 0.1 degrees south of Mercury this evening.

Feb.19. Nicholas Copernicus was born on this day in 1473. The Russian MIR space station was launched on this day in 1986 and lasted for 15 years. Mercury is at greatest eastern elongation from the sun and the moon passes 5 degrees north of Saturn and Neptune this evening.

Feb. 20. On this day in 1962 John Glenn became the first American to go into orbit around the earth and only the second human to do so after the Russian Yuri Gagarin on April 12 of 1961.

George Smoot was born on this day in 1945. He is an American astronomer who won the Nobel Prize in physics in 2006 for his work on COBE, the cosmic microwave background explorer satellite.

Feb. 23. Pioneer 10 left the solar system on this day in 1990. Supernova 1987A was discovered on this day in 1987 by Canadian astronomer Ian Shelton in the Tarantula nebula in the Large Magellanic cloud, which is a satellite galaxy of our Milky Way located about 160,000 light years away and visible in the southern sky. The moon passes 6 degrees north of Uranus in the Pleiades open star cluster in Taurus this evening.


Feb.24. First quarter moon is at 7:28 a.m. Brian Schmidt was born on this day in 1967. He shared the Nobel Prize in physics with Saul Perlmutter and Adam Riess in 2011 for his discovery of the increasing rate of expansion of the whole universe which is caused by a mysterious force we named dark energy. It is basically an antigravity force that works on the very large scale.

Feb. 26. Mercury passes 5 degrees north of Venus this evening.

Feb.27. The moon passes 4 degrees north of Jupiter this morning. Alan Guth was born on this day in 1947. He proposed the cosmic hyperinflation theory to explain why the universe is so uniform in all directions.

Feb. 28. Linus Pauling was born on this day in 1901. He won 2 unshared Nobel prizes. One in chemistry in 1954 for his work on molecular bonds and resonance that happen in DNA and the Nobel Peace prize in 1962 for his work on banning nuclear weapons testing that led to the August 5. 1963 Nuclear Test Ban Treaty.

Touching the Sun

This February our club will be hosting a Zoom presentation by the team producing a NOVA program:
Touching the Sun

The presentation will begin at 7:30pm.

Here is the ZOOM meeting link:
<https://us06web.zoom.us/j/5631683325>

Touching the Sun is a multi-platform educational project for PBS anchored by a feature-length documentary that explores humanity's enduring relationship with our closest star—scientifically and culturally. The presentation will introduce the scope and vision of the project, including its broadcast film, digital series, classroom resources, and national outreach campaign designed to engage students, educators, and the public. Through cinematic storytelling, *Touching the Sun* reveals how the Sun shapes life on Earth, influences climate and technology, and continues to inspire wonder across generations.

The presentation will then dive into the great unanswered mysteries of heliophysics—solar storms, coronal heating, magnetic fields, and space weather—featuring cutting-edge research from NASA and an international team of solar scientists collaborating on the film. Audiences will see exclusive behind-the-scenes footage from the 2024 total solar eclipse production, including specialized capture techniques and field operations, offering a rare look at how the film was made. The session will conclude with a forward-looking update on next steps for *Touching the Sun*, including post-production, distribution, educational rollout, partnership opportunities, and current and future funding pathways.

NOTE: The Feb 2026 Sky Object of the Month was previously featured as the Feb 2012 issue.

Updated & Edited by Paul Kusewicz

Sky Object of the Month – February 2026

Asteroid 433 Eros

by Glenn Chaple

In November 2011, astronomers were treated to a fly-by of near asteroid 2005 YU 55. An 11th magnitude object, 2005 YU 55 raced across the sky at an astounding rate of one degree every 10 minutes. Viewing the event required a telescope of 6-inch aperture or larger.

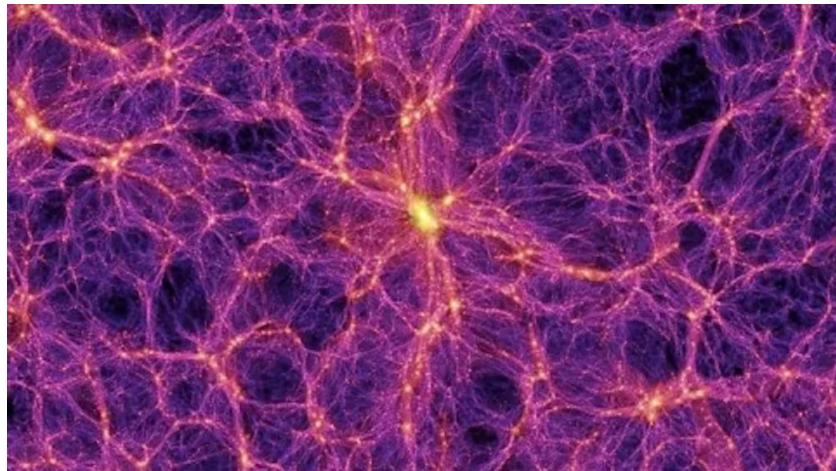
Very rarely does a near-earth asteroid become bright enough to be seen with small backyard scopes. A notable exception is the asteroid 433 Eros. The number “433” indicates that Eros was the 433rd asteroid to be found and catalogued – the honor going to the German astronomer Carl Witt, who spotted Eros in August of 1898. Eros is normally a faint object, but every few decades it passes near enough to brighten to 7th or 8th magnitude. On January 31, 2012 it made a close approach of 16.6 million miles.

As I write this update on January 10, 2026 Eros will be 39,493,000 miles from Earth. So its motion will not be as frantic, but you will notice a definite displacement over time especially when passing by a near-by star. Its magnitude is 10.25, making it a faint but observable target for amateur telescopes, currently passing in the evening sky in the constellation Triangulum.

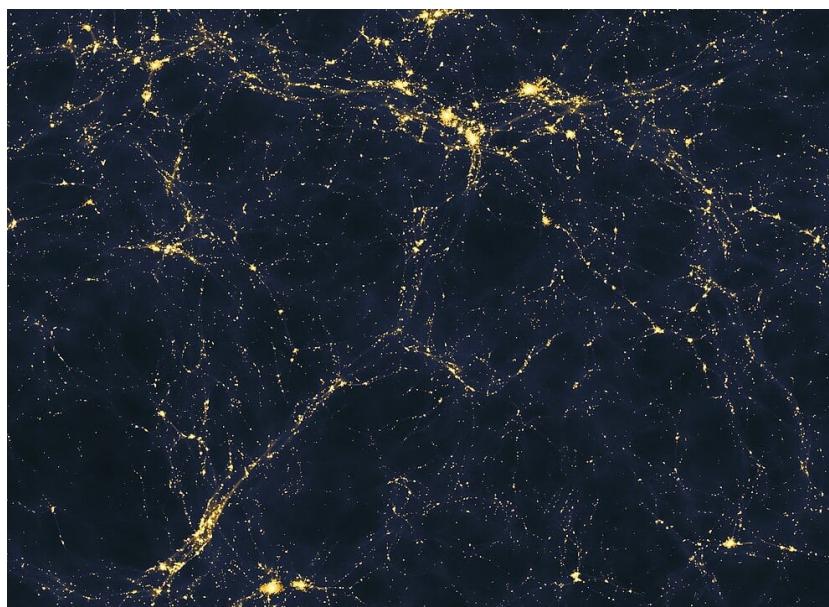
During the 20th century, studies of Eros hinted that it might be an elongated body. In 2000, Eros was visited by the NEAR Shoemaker spacecraft, which orbited and imaged the asteroid for a year before making a soft landing on its surface. NEAR Shoemaker confirmed that Eros is indeed elongated, with dimensions of 22 X 8 X 8 miles.

Eros' last close encounter was in 1975. It won't be a small-scope target again until 2056, so you won't want to miss this opportunity. See the first asteroid humans have landed on.

Image courtesy NASA



Near occultation of kappa () Geminorum by 433 Eros on January 23, 1975 (observations made at 15 minute intervals) 45X 4.5-inch reflecting telescope
(sketch by author)


A 50 Million Light Year Structure Caught Spinning

By Mark Thompson

The Cosmic Web

Cosmic filaments are the largest known structures in the universe, vast thread like formations of galaxies and dark matter that form a scaffolding upon which all smaller structures hang. These immense channels propel matter across hundreds of millions of light years, feeding gas into galaxies and shaping their evolution. Now, astronomers have caught one of these giant structures spinning.

Computer simulation showing galaxy filaments, walls and voids form web-like structures (Credit :Andrew Pontzen)

“Continued on page 8”

An international team led by the University of Oxford discovered 14 hydrogen rich galaxies arranged in an impossibly thin line, just 5.5 million light years long but only 117,000 light years wide. This thin string of galaxies sits embedded within a much larger cosmic filament stretching roughly 50 million light years and containing over 280 galaxies. What makes this structure remarkable isn't just its size but its motion. The galaxies aren't randomly oriented. Instead, many are spinning in the same direction as the filament itself, and detailed analysis reveals something even more striking that the entire structure is rotating.

The evidence comes from examining how galaxies on either side of the filament's central spine move in opposite directions, the telltale signature of rotation. Using models of filament dynamics, researchers calculated a rotation velocity of 110 kilometres per second and estimated the radius of the filament's dense core at approximately 163,000 light years.

"You can liken it to the teacups ride at a theme park. Each galaxy is like a spinning teacup, but the whole platform, the cosmic filament, is rotating too." Co-lead author Dr. Lyla Jung from Oxford's Department of Physics

This dual motion, individual galaxies spinning while the entire structure rotates, provides rare insight into how galaxies acquire their angular momentum. Current theories suggest that galaxies gain their spin from interactions with surrounding structures, but this discovery shows that large scale rotation can influence galaxy spins more strongly and for far longer than models predicted.

Artist impression of the South African MeerKAT Radio Telescope

The filament appears to be caught in an early stage of evolution. Its abundance of gas rich galaxies and low internal motion, a state astronomers call "dynamically cold," suggest it remains relatively undisturbed since formation. These hydrogen rich galaxies are particularly valuable for understanding gas flow along cosmic filaments. Atomic hydrogen, the raw fuel for star formation, is easily disturbed by motion, making it an excellent tracer of how material funnels through these routes into galaxies.

The discovery came from combining data from South Africa's MeerKAT radio telescope with optical observations from surveys mapping the Cosmic Web. This multi-wavelength approach revealed both the coherent spin alignment of galaxies and the bulk rotation of the structure itself, demonstrating how different telescopes working together can unveil phenomena invisible to any single instrument.

Astro-Imaging with a SmartEye

Submitted by Paul Kursewicz

Dumbbell Nebula M27 (no cropping)

10-inch Meade Schmidt-Cassegrain, f/6.3, FL 1600mm

IR-cut Filter, 33subs, 20sec, 350 Gain, 8-22-25

Fit Files stacked in Deep Sky Stacker — Total time: 11 minutes

Photo Editing Software Used: PixInsight, Photoshop, Siril, AstroSurface

This was my very first test image using the SmartEye. I know I could of done a better job with a longer exposure time. But, I think it's good enough to share. M27 is a planetary nebula in the constellation Vulpecula, and lies at a distance of about 1,360 light-years. It's the second brightest planetary nebula in the sky second only to the Helix Nebula in Aquarius. Nice object in a telescope.

Astro-Imaging with a Dwarf3

Submitted by Paul Kursewicz

Pleiades (M45)

FIT files stacked in Deep Sky Stacker
Photo Editing Software Used: PixInsight, Photoshop, Siril, AstroSurface
Total Exposure Time: 1hr 32min

60sec, 120gain, 92subs, FL 737mm, Astro Filter

11-18-25

The Pleiades also known as the *Seven Sisters* is an open cluster containing middle-aged, hot B-type stars and is located in the constellation of Taurus. It is among the nearest star clusters, 430 ly to Earth and is the cluster most obvious to the naked-eye in the night sky. It's between 75 and 150 million years old. It contains the reflection nebulae NGC 1432, an HII region, and NGC 1435, known as the Merope Nebula. Around 2330 BC the Pleiades marked the vernal point. Today, Pisces marks the vernal point due to precession of the equinoxes. Reflection nebulae around the brightest stars were once thought to be leftover material from their formation, but are now considered to be an unrelated dust cloud in the interstellar medium through which the stars are currently passing.

Taken with my Cell Phone

Submitted By Paul Kursewicz

♪...Here Comes the Sun...♪

8-16-24

6:37am

Look down the center of the road. Is that an orange balloon floating low in the sky? I have never seen the sun look like this before. It was early morning and the sun was shinning through a dense fog. The next page shows a closer image.

“Continued on page 12”


Taken with my Cell Phone

Submitted By Paul Kursewicz

♪...Here Comes the Sun...♪

8-16-24

6:37am

Look closely at the sun. Zoom in, and you'll see a thin opaque ring encircling it. Very strange isn't it? I took this image from the town of Bethlehem, NH at an elevation of 1,427 feet. No editing was done to either picture. This is exactly how the sun looked to the naked-eye.

Light Pollution Is Increasing Everywhere. What Is The Bortle Scale? Use The Following Chart To Determine How Bright Your Site Is Without All Of The Science And Calculations To Gauge The Sky Brightness Fairly Accurately.

Offered By Roger Ivester

Bortle Dark Sky Scale:

The Bortle Dark Sky Scale was developed by John Bortle “based on nearly 50 years of observing experience,” to describe the amount of light pollution in a night sky. It was first published in a 2001 [Sky & Telescope](#) article.

Number Code	Map Color Code	Label	Sky Mag.	Naked Eye Limit Mag.	320mm Limit Mag.	M33 visible?	M31 visible?	Central Galaxy visible?	Zodiacal light visible?	Light Pollution	Clouds	Ground Objects
1		excellent dark sky	22.00–21.99	≥ 7.5	> 17	obvious	.	casts shadows	striking	airglow apparent	.	visible only as silhouettes
2		average dark sky	21.99–21.89	7.0–7.49	16.5	easy with direct vision	.	appears highly structured	bright, faint yellow color	airglow faint	dark everywhere	large near objects vague
3		rural sky	21.89–21.69	6.5–6.99	16.0	easy with averted vision	.	complex structure	obvious	LP on horizon	dark overhead	large distant objects vague
4		rural/suburban transition	21.69–20.49	6.0–6.49	15.5	difficult with averted vision	obvious	only large structures	halfway to zenith	low LP	lit in distance	distant large objects distinct
5		suburban	20.49–19.50	5.5–5.99	14.5–15.0	.	easy with direct vision	washed out	faint	encircling LP	brighter than sky	
6		bright suburban	19.50–18.94	5.0–5.49	14.0–14.5	.	easy with averted vision	visible only near zenith	.	LP to 35°	fairly bright	small close objects distinct
7		suburban/urban transition	18.94–18.38	4.5–4.99	14.0	.	difficult with averted vision	invisible	.	LP to zenith	brilliantly lit	.
8		city sky	< 18.38	4.0–4.49	13	bright to 35°	.	headlines legible
9		inner city sky	.	≤ 4.0	bright at zenith	.	.

Club Meeting & Star Party Dates

Date	Subject	Location
Feb 6	<p><u>ASNNE Club Meeting:</u></p> <p>Business Meeting starts prior to Club meeting.</p> <p>Club Meeting (in house & on Zoom): 7:30-9:30PM</p> <p>Guest Speaker: Our club will be hosting a Zoom presentation titled: <i>Touching the Sun</i>. For more information see page 5.</p> <p>Bernie Reim - "What's UP"</p> <p>Astro Shorts: (news, stories, jokes, reports, questions, photos, observations etc.)</p>	The New School, Kennebunk, Me.
Last Month	<p>Last month we had our meeting at The New School. There was a business meeting before the meeting. Ian gave us a partial presentation of his top five physics stories of the year. Bernie did his What's Up presentation. Astro Shorts were shared.</p>	
TBD	Club/Public Star Party: Weather permitting.	Talmage Observatory at Starfield West Kennebunk, Me.

Directions to ASNNE event locations

Directions to The New School in Kennebunk [38 York Street (Rt1) Kennebunk, ME]

For directions to The New School you can use this link to the ASNNE NSN page and then click on "get directions" from the meeting location. Enter your starting location to generate a road map with complete directions. It works great. http://nightsky.ipl.nasa.gov/club-view.cfm?Club_ID=137

Directions to Talmage Observatory at Starfield [Alewife Road, Kennebunk, ME]

From North:

Get off turnpike at exit 32, (Biddeford) turn right on Rt 111. Go 5 miles and turn left on Rt 35. Go 2 miles on Rt 35 over Kennebunk River to very sharp 90 degree left turn. The entrance to the Starfield Observatory site is at the telephone pole at the beginning of the large field on the left. Look for the ASNNE sign on the pole.

From South:

Get off the turnpike at exit 25 in Kennebunk. After toll both turn right on Rt 35. Go up over the turnpike and immediately turn right on Rt 35. About 4 miles along you will crest a hill and see a large field on your right. Continue until you reach the end of the field. Turn right into the Starfield Observatory site at the last telephone pole along the field. Look for the ASNNE sign on the pole. If you come to a very sharp 90 degree right turn you have just passed the field.

Principal Meteor Showers in 2026

January 4
Quadrantids

April 22
Lyrids

May 6
Eta Aquarids

July 30
Delta Aquarids

August 12
Perseids

October 9
Draconid

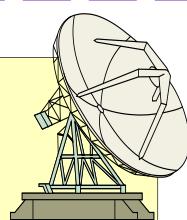
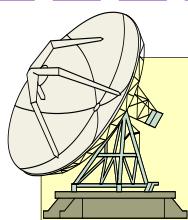
October 21
Orionids

November 9
Taurids

November 18
Leonids

November 26
Andromedids

December 14
Geminids



December 22
Ursids

*Note: Dates are
for maximum*

MEMBERSHIP DUES

Membership fees are for the calendar year beginning in January and ending in December. Dues (see page 17 for prices) are payable to the treasurer during November for the upcoming year. New members who join during or after the month of July shall pay half the annual fee, for the balance of the year. Checks should be made payable to the Astronomical Society of Northern New England (A.S.N.N.E.). If you would like to mail in your dues, use the form on page 17. Or you can use PayPal via asnne.astronomy@gmail.com

A Member who has not paid current dues by the January meeting will be dropped from membership, (essentially a two-month grace period.) Notice of this action shall be given to the Member by the Treasurer. Reinstatement shall be by payment of currently due dues.

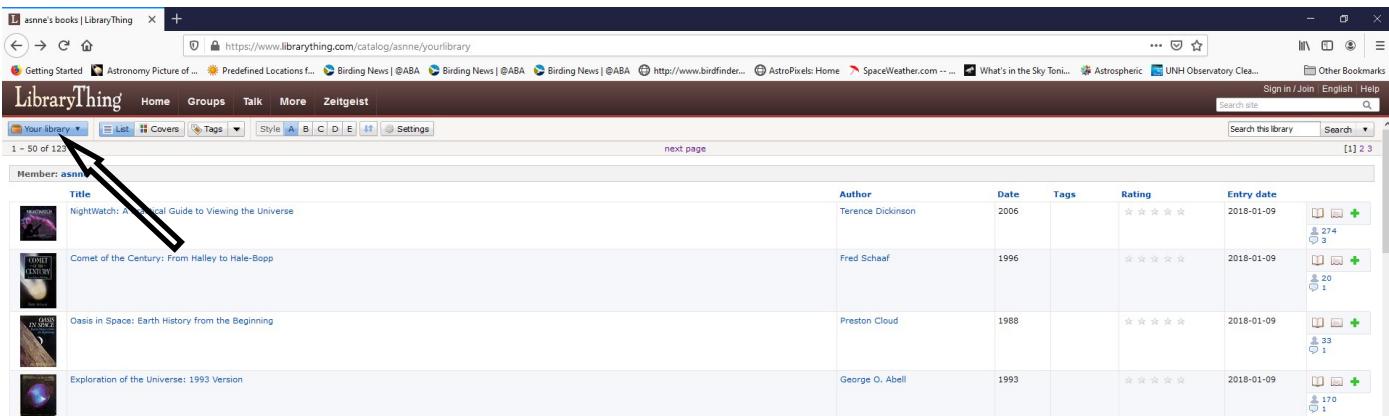
Got any News?

Skylights Welcomes Your Input.

Here are some suggestions:

*Book reviews -- Items for sale -- New equipment --
Ramblings -- Star parties -- Observing -- Photos.*

Our club has Merchandise for Sale at: <https://www.cafepress.com/shop/ASNNE/products>

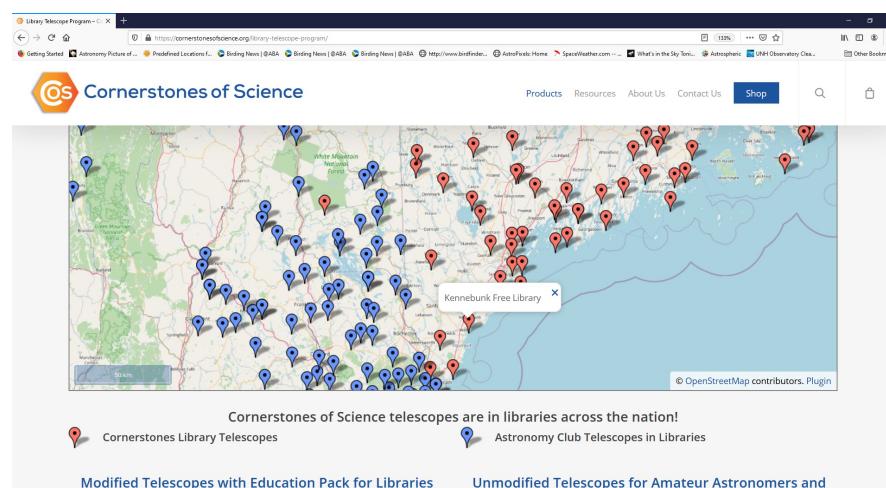


*ALL money raised goes to our operating fund.
Any design can be put on any item.*

Contact David Bianchi dadsnorlax@yahoo.com for further details.

Astronomy Club & Library Resources

Our club has a library of astronomy books which are stored at The New School in Kennebunk, Maine (our monthly club meeting location). To request a book(s), contact one of the club officers. A listing of books is provided here: <https://www.librarything.com/profile/asnne>. After clicking on the link, a window will open. Click on “Your library” near the upper left corner (as shown by the arrow below). Then scroll down to the end of the page to go to the next page.



Member: asnne

Title	Author	Date	Tags	Rating	Entry date
NightWatch: A Practical Guide to Viewing the Universe	Terence Dickinson	2006		★ ★ ★ ★	2018-01-09
Comet of the Century: From Halley to Hale-Bopp	Fred Schaaf	1996		★ ★ ★ ★	2018-01-09
Oasis in Space: Earth History from the Beginning	Preston Cloud	1988		★ ★ ★ ★	2018-01-09
Exploration of the Universe: 1993 Version	George O. Abell	1993		★ ★ ★ ★	2018-01-09

Would you like to borrow a telescope? While many astronomy clubs may have a scope to lend out, there are also many libraries which have telescopes for their guests to use. Here are a couple of links.

The following link will bring up an active map (see screen shot below) of the USA showing the libraries which have telescopes to lend out: <https://cornerstonesofscience.org/library-telescope-program/>

Cornerstones of Science

Products Resources About Us Contact Us Shop

Cornerstones of Science telescopes are in libraries across the nation!

Cornerstones Library Telescopes Astronomy Club Telescopes in Libraries

Modified Telescopes with Education Pack for Libraries Unmodified Telescopes for Amateur Astronomers and

The below link will show a list of known participating library locations for the state of Maine.
<https://www.librarytelescope.org/locations/usa/maine>

To join ASNNE, please fill out the below membership form. *Checks should be made payable to: Astronomical Society of Northern New England (A.S.N.N.E).* For more details, please visit our website: <http://www.asnne.org>

9

Astronomical Society of Northern New England
P.O. Box 201
Kennebunk, ME 04043-1338

2026 Membership Registration Form

(Print, fill out and mail to address above) or Use PayPal via asnne.astronomy@gmail.com

Name(s for family): _____

Address: _____

City/State: _____ Zip code: _____

Telephone # _____

E-mail: _____

Membership (check one):

Individual \$50 Family \$ 60 Student under 21 years of age \$10 Donation

Total Enclosed _____

Tell us about yourself:

1. Experience level: Beginner Some Experience Advanced

2. Do you own any equipment? (Y/N) And if so, what types?

3. Do you have any special interests in Astronomy?

4. What do you hope to gain by joining ASNNE?

5. How could ASNNE best help you pursue your interest in Astronomy?

6. ASNNE's principal mission is public education. We hold many star parties for schools and the general public for which we need volunteers for a variety of tasks, from operating telescopes to registering guests to parking cars. Would you be interested in helping?

Yes No

7. ASNNE maintains a members-only section of its web site for names, addresses and interests of members as a way for members to contact each other. Your information will not be used for any other purpose. Can we add your information to that portion of our web site?

Yes No

